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A B S T R A C T   

Objective: This study aimed to 1) investigate algorithm enhancements for identifying patients eligible for genetic 
testing of hereditary cancer syndromes using family history data from electronic health records (EHRs); and 2) 
assess their impact on relative differences across sex, race, ethnicity, and language preference. 
Materials and Methods: The study used EHR data from a tertiary academic medical center. A baseline rule-base 
algorithm, relying on structured family history data (structured data; SD), was enhanced using a natural lan-
guage processing (NLP) component and a relaxed criteria algorithm (partial match [PM]). The identification 
rates and differences were analyzed considering sex, race, ethnicity, and language preference. 
Results: Among 120,007 patients aged 25–60, detection rate differences were found across all groups using the SD 
(all P < 0.001). Both enhancements increased identification rates; NLP led to a 1.9 % increase and the relaxed 
criteria algorithm (PM) led to an 18.5 % increase (both P < 0.001). Combining SD with NLP and PM yielded a 
20.4 % increase (P < 0.001). Similar increases were observed within subgroups. Relative differences persisted 
across most categories for the enhanced algorithms, with disproportionately higher identification of patients who 
are White, Female, non-Hispanic, and whose preferred language is English. 
Conclusion: Algorithm enhancements increased identification rates for patients eligible for genetic testing of 
hereditary cancer syndromes, regardless of sex, race, ethnicity, and language preference. However, differences in 
identification rates persisted, emphasizing the need for additional strategies to reduce disparities such as 
addressing underlying biases in EHR family health information and selectively applying algorithm enhancements 
for disadvantaged populations. Systematic assessment of differences in algorithm performance across population 
subgroups should be incorporated into algorithm development processes.  
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1. Introduction 

Recent widespread adoption of electronic health records (EHRs) is 
revolutionizing healthcare. Larger volumes of electronic healthcare data 
promote the discovery of new evidence and the delivery of evidence- 
based healthcare interventions. EHR data-driven algorithms continue 
to evolve providing clinical insights that assist healthcare professionals 
to identify patients who benefit from certain healthcare services. How-
ever, EHR algorithms that rely on patient data can only assist individuals 
who have the required data. Populations who experience data poverty 
(those who have disproportionately incomplete and inaccurate EHR 
data) are overlooked, exacerbating disparities in healthcare outcomes, 
particularly for medically underserved and marginalized populations. 
[1]. 

Individualized cancer risk evaluation is one area that could benefit 
from population-based approaches driven by algorithms over EHR data. 
Early identification of individuals at higher inherited risk for developing 
cancer is critical for personalized cancer prevention and to reduce dis-
parities in morbidity and mortality, particularly among individuals from 
historically marginalized groups.[2] For example, the US Preventive 
Services Task Force recommends genetic testing be incorporated into 
risk assessment of patients with personal or family history of breast or 
ovarian cancer in order to identify those individuals with cancer risk 
levels warranting increased screening or risk reducing surgery.[3] 
Similarly, the US Multi-Society Task Force on Colorectal Cancer rec-
ommends including family history in tailoring colorectal cancer 
screening.[4] Estimates based on family history indicate that the prev-
alence of individuals with familial risk is 13 % for breast cancer and 5 % 
for colorectal cancer.[5] However, despite increased availability and 
lower cost of genetic testing, the majority of individuals meeting 
evidence-based criteria for genetic testing of hereditary syndromes have 
not received genetic services.[6,7]. 

The Genetic Cancer Risk Detector (GARDE) platform is an EHR 
innovation that uses algorithms to identify patient populations that meet 
criteria set by National Comprehensive Cancer Network (NCCN) 
guidelines for genetic testing of hereditary cancer syndromes using pa-
tients’ family health history from the EHR.[8,9] GARDE has been used to 
support the Broadening the Reach, Impact, and Delivery of Genetic 
Services (BRIDGE) trial. BRIDGE is a randomized controlled trial with 
3,073 patients who receive primary care at the University of Utah Health 
(UHealth) and New York University (NYU) Langone Health. The trial 
compared two models of patient outreach and education (enhanced 
standard of care versus automated chatbot) to offer eligible patients 
access to genetic testing for hereditary breast, ovarian, and colorectal 
cancer syndromes.[10] In a recent study that analyzed family history 
data extracted from UHealth and NYU, our group discovered substantial 
disparities across sex, race, ethnicity, and preferred language in the 
availability and completeness of family health history documentation 
and consequently in the identification of NCCN-eligible patients at both 
organizations.[11]. 

Given the effect of information presence bias discovered in family 
history data and GARDE’s dependence on structured family history data, 
the authors formulated two methods to mitigate missing data with the 
goal of reducing the discovered disparities: extracting family history 
attributes such as age of disease onset using natural language processing 
(NLP) over family history comments fields; and relaxing algorithm 
criteria to identify individuals who partially match criteria. As such, the 
objective of this study was to investigate these new methods comparing 
1) identification rates of eligible patients; and 2) demographic differ-
ences according to sex, race, ethnicity, and preferred language. 

1.1. Statement of significance 

Problem. Computer algorithms over EHR data are promising ap-
proaches to identify patients who may benefit from certain healthcare 
services, such as genetic testing, but have the potential to exacerbate 

health disparities. 
What is already known. A previous study has shown significant 

disparities in family health history documentation in the EHR in terms of 
sex, race, ethnicity, and language preference.[11]. 

What this paper adds. This study investigated EHR algorithms to help 
address demographic differences in the identification of patients 
meeting family history-based criteria for genetic testing of hereditary 
cancer syndromes. The study provides a method that could be used as a 
part of EHR algorithm development to deliberately assess potential al-
gorithm disparities. 

2. Methods 

2.1. Setting 

The setting for the study was the UHealth system, a tertiary academic 
medical center and one of the largest healthcare delivery systems in the 
Intermountain West. 

2.2. Study population 

Study participants included individuals aged 25 to 60 years who had 
completed a primary care visit at UHealth within a 2-year time window 
between September 16, 2020 and September 15, 2022. 

2.3. Data 

Retrospective EHR data were extracted from UHealth’s enterprise 
data warehouse (EDW). Patient demographics (sex, race, ethnicity, and 
primary language) and structured family history along with unstruc-
tured comments associated with structured family history assertions 
were extracted for all individuals in the study population. 

2.4. Algorithms 

GARDE’s baseline algorithm uses structured family health history 
data (structured data; SD) from the EHR, which are stored in three 
discrete data fields: disease of interest (e.g., breast cancer, colorectal 
cancer), family member relationship (e.g., mother, sister, paternal 
grandfather), and age of onset in years. Each NCCN criteria relies at a 
minimum on disease of interest and relationship (e.g., first-degree relative 
with pancreatic cancer), while a subset of the criteria also relies on 
cancer age of onset (e.g., first- or second-degree relative with breast 
cancer at age ≤ 45 years). Details about the logic and evaluation of this 
algorithm are available elsewhere.[8,9]. 

There are important limitations with the family health history SD: 1) 
age of onset in years is often missing, and 2) disease of interest and rela-
tionship codes often lack specificity. Both limitations impact the ability 
to process NCCN criteria. However, the family history module in the 
EHR provides a free-text comments field adjacent to structured data 
items to allow users to add unconstrained information such as age of 
onset using fuzzy terms (e.g., “in her thirties”), a more specific disease of 
interest (e.g., “breast cancer” when SD only has a code for “cancer”), and 
the family member’s side of the family (e.g., “paternal”). Two en-
hancements were investigated to address both limitations: 1) a natural 
language processing (NLP) algorithm to extract information from the 
comments field and 2) a relaxation of the NCCN age of onset-specific 
criteria allowing for partial matches (PM) when age of onset is missing. 
An overview of each method follows below. 

2.4.1. Structured Data + Natural language processing (SD + NLP) 
Upon review of the family history statements, common information 

patterns emerged observing the free text comments as follows: 
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1. A general coded disease of interest (e.g., code for “cancer”) is further 
specified in the comments (e.g., “breast”) rather than selecting a pre- 
coordinated breast cancer code.  

2. The side of the family (e.g., “paternal”) is specified in the comments 
to supplement a coded family member relationship (e.g., code for 
“uncle”) rather than selecting a pre-coordinated “paternal uncle” 
code.  

3. Age of onset values and ranges are provided as text rather than an 
integer (e.g., “in her thirties”). 

The NLP algorithm augments the SD by extracting information from 
the free-text comments for all three patterns above. Table 1 provides 
three examples of family history assertions using a combination of SD 
and data extracted from the free text comments field. The NLP compo-
nent uses a rule-based approach with 95 % sensitivity and 99 % preci-
sion in correctly extracting fragments of family history information (i.e., 
disease of interest, relationship side of the family, and age of onset) from the 
comments fields. Details of the development and evaluation of the SD +
NLP algorithm are described elsewhere.[12,13]. 

2.4.2. Partial match (PM) 
The PM strategy relaxes 3 of the 11 NCCN criteria rules that depend 

on age of onset. The other 8 rules that do not rely on age of onset are used 
with no modification. The rules before and after the relaxed approach 
are as follows:  

1. From “First or second degree relative with breast cancer and age of 
onset < 50” to “First or second degree relative with breast cancer”  

2. “First or second degree relative with colon cancer and age of onset <
50” to “First or second degree relative with colon cancer.”  

3. “First or second degree relative with endometrial cancer and age of 
onset < 50” to “First or second degree relative with endometrial 
cancer.” 

With the partial match algorithm, patients who meet any of the 3 
rules above, or any of the 8 rules that do not rely on age of onset, are 
considered as meeting criteria. 

2.5. Hypotheses 

Two null hypotheses were tested regarding the identification of pa-
tients who potentially meet NCCN criteria for genetic evaluation of 
hereditary cancer syndromes: 

1. Compared to SD, enhanced algorithms do not increase the identifi-
cation rate for each sex, race, ethnicity, and language.  

2. Compared to SD, enhanced algorithms do not reduce differences in 
the identification rate across sex, race, ethnicity, and language. 

2.6. Statistical analysis 

For the study population we computed descriptive statistics on pa-
tients; sex, race, ethnicity, and primary language. Fisher’s exact test and 
Pearson’s Chi-squared test were used to test differences in demographic 
characteristics between those who met the algorithm criteria under the 
SD condition and those who did not. We used generalized estimating 
equations[14] (GEEs) with a binomial variance, an independence cor-
relation structure, and an identity link to estimate the percentage-point 
differences (absolute proportion changes) between algorithm enhance-
ments. Let Yij denote the binary response of whether the ith patient met 
the criteria under the jth algorithm enhancement (j = 1, 2,3, 4), where 
j = 1 is the structured data algorithm condition. The population- 
averaged model for the proportion of patients meeting the algorithm 
criteria is 

πij = β1 + β2Xij2 + β3Xij3 + β4Xij4,

where πij = E
(
Yij|Xij

)
. The parameter β1 is the proportion of patients 

who met the criteria under the SD condition. The parameters β2 (SD +
NLP), β3 (SD + NLP + PM), and β4 (SD + PM) represent the percentage- 
point differences (increase or decrease) when compared to using the SD 
algorithm only. 

Multivariable logistic regression[15] models were used to estimate 
adjusted odds ratios and 95 % confidence intervals for associations be-
tween patient demographics and meeting the criteria at each step. Step 1 
included all patients. Step 2 included patients that did not meet the 
criteria using SD + NLP. Step 3 included patients that did not meet the 
criteria using NLP. These multivariable models were used to compute 
predicted probabilities by sex, race, ethnicity, and primary language. We 
used R[16] to perform all statistical analyses and set statistical signifi-
cance at 0.05. 

3. Results 

The analysis included 120,007 patients aged 25 to 60 years who had 
a primary care visit at UHealth in a 2-year window between September 
16th 2020 and September 15th 2022. Of those, 70,666 (58.9 %) were 
female, 88,974 (74.2 %) identified as White, 96,187 (80.2 %) identified 
as non-Hispanic/Latino, and 110,026 (91.8 %) had English as their 
preferred language recorded in the EHR (Table 2). Using the SD algo-
rithm, 5,430 (4.5 %) patients met the criteria for genetic evaluation of 
hereditary cancer syndromes. Using this algorithm, significant differ-
ences in identification rates were found in terms of sex, race, ethnicity, 
and language preference (all P < 0.001). 

3.1. Do algorithm enhancements increase the identification rate of eligible 
patients? 

Overall, GEE estimates of percentage-point differences for algorithm 
enhancements showed that both enhancements led to significant in-
creases in identification rates (Table 3). Compared with SD alone, 
adding NLP or PM increased the identification rate by 1.9 % and 18.5 %, 
respectively (both P < 0.001). Combining SD with NLP and PM led to the 
highest increase of 20.4 % (P < 0.001). Significant increases in identi-
fication rates were found within each sex, race, ethnicity, and language 
preference category (all P < 0.001). Under each algorithm enhancement 
(SD, SD + NLP, SD + NLP + PM), highest increases were found for fe-
males (6.1 %, 8.5 %, and 31.9 %, respectively), patients identified as 
White (5.1 %, 7.3 %, and 27.8 %), non-Hispanic patients (4.8 %, 6.9 %, 
and 26.5 %), and those whose preferred language was English (4.8 %, 
6.8 %, and 26.2 %). 

The NLP algorithm extracted 2,033 disease of interest instances, 91 
relationship instances, and 680 age of onset instances. This led to the 
identification of 2,268 additional patients. The most frequent contri-
butions were due to patients meeting breast cancer criteria due to the 

Table 1 
Structured family history statements before (SD) and after NLP (SD + NLP) for 
three sample cases. Bolded values indicate NLP-added improvements.   

ID 
(Code) 
Method 

(Code) 
Relationship 

(Code) Disease 
of Interest 

(Integer) 
Age of 
Onset 

(Free Text) 
Comments 

1 SD Mother Cancer  breast 
1 SD +

NLP 
Mother Breast Cancer  breast 

2 SD Uncle Prostate Cancer  paternal 
2 SD +

NLP 
Paternal 
Uncle 

Prostate Cancer  paternal 

3 SD Maternal Aunt Breast Cancer  In her 
thirties 

3 SD +
NLP 

Maternal Aunt Breast Cancer 30* In her 
thirties  

* NLP’s raw output was 30–39 and GARDE used the lower bound of the range 
(30). 
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following:  

• 771 (34 % of the new patients) patients met criteria due to a 1st 
degree relative with pancreatic cancer  

• 641 (28.3 % of the new patients) due to a 1st or 2nd degree relative 
with ovarian cancer  

• 318 (14.1 % of the new patients) due to a 1st or 2nd degree relative 
with breast cancer and age of onset at less than 45 years old 

The relaxed PM algorithm led to 22,212 additional patients meeting 

criteria based on the three rules that relied on age of onset. Of those:  

• 17,088 (76.9 %) additional patients met breast cancer criteria due to 
a 1st or 2nd degree relative with breast cancer and unknown age of 
onset  

• 12,272 (55.2 %) met colorectal cancer criteria due to a 1st degree 
relative with colon cancer and unknown age of onset  

• and 830 (3.7 %) met colorectal cancer criteria due to a 1st degree 
relative with endometrial cancer and unknown age of onset 

3.2. Do algorithm enhancements affect relative differences across groups? 

Overall, multivariable logistic regression showed that relative dif-
ferences in identification rates persisted with each algorithm enhance-
ment across most categories (Table 4). Compared to females, males had 
lower identification odds using the SD (OR = 0.35, 95 % CI: 0.33, 0.38), 
SD + NLP (OR = 0.48, 95 % CI: 0.43, 0.52), and PM (OR = 0.39, 95 % CI: 
0.38, 0.40) algorithms. 

Compared to patients identified as White, lower identification odds 
were found using the SD, NLP, and PM algorithms for American Indian/ 
Alaska Native (ORs = 0.53, 0.65, and 0.54 respectively; all P < 0.001), 
Asian (ORs = 0.52, 0.45, and 0.57; all P < 0.001), Black or African 
American (ORs = 0.60, 0.45, 0.45; all P < 0.001), and Native Hawaiian/ 
Pacific Islander (OR = 0.53, 0.70, 0.57; all P < 0.001). 

Compared to patients who identified as non-Hispanic, Hispanic pa-
tients had lower identification odds using the SD (OR = 0.90; P = 0.076), 

Table 2 
Patient characteristics and identification rates using the structured data (SD) 
algorithm.    

Overall Met Criteria (SD)     

No Yes  

Characteristic N N =
120,007 

N =
114,577 

N =
5,430  

P value1 

Sex, No. (%) 120,007     <0.001 
Female  70,666 

(58.88 
%) 

66,349 
(57.91 
%) 

4,317 
(79.50 
%)  

Male  49,293 
(41.08 
%) 

48,180 
(42.05 
%) 

1,113 
(20.50 
%)  

Unknown/Did 
not disclose  

48 (0.04 
%) 

48 (0.04 
%) 

0 (0.00 
%)  

Race, No. (%) 119,937     <0.001 
White  88,974 

(74.18 
%) 

84,408 
(73.71 
%) 

4,566 
(84.10 
%)  

American 
Indian/ 
Alaska Native  

801 
(0.67 %) 

777 
(0.68 %) 

24 
(0.44 
%)  

Asian  5,824 
(4.86 %) 

5,684 
(4.96 %) 

140 
(2.58 
%)  

Black or African 
American  

3,258 
(2.72 %) 

3,174 
(2.77 %) 

84 
(1.55 
%)  

Native 
Hawaiian/ 
Pacific 
Islander  

1,878 
(1.57 %) 

1,827 
(1.60 %) 

51 
(0.94 
%)  

Other  16,018 
(13.36 
%) 

15,546 
(13.58 
%) 

472 
(8.69 
%)  

Unknown/Did 
not disclose  

3,184 
(2.65 %) 

3,092 
(2.70 %) 

92 
(1.69 
%)  

Ethnicity, No. 
(%) 

119,943     <0.001 

non-Hispanic/ 
Latino  

96,187 
(80.19 
%) 

91,542 
(79.94 
%) 

4,645 
(85.57 
%)  

Hispanic/Latino  19,226 
(16.03 
%) 

18,577 
(16.22 
%) 

649 
(11.96 
%)  

Unknown/Did 
not disclose  

4,530 
(3.78 %) 

4,396 
(3.84 %) 

134 
(2.47 
%)  

Primary 
Language, 
No. (%) 

119,802     <0.001 

English  110,026 
(91.84 
%) 

104,746 
(91.58 
%) 

5,280 
(97.24 
%)  

Spanish  6,075 
(5.07 %) 

5,964 
(5.21 %) 

111 
(2.04 
%)  

Other  3,701 
(3.09 %) 

3,662 
(3.20 %) 

39 
(0.72 
%)    

1 Fisher’s exact test; Pearson’s Chi-squared test. 

Table 3 
Generalized estimating equations estimates of percentage-point differences for 
algorithm enhancements: A = SD, B = SD + NLP, C = SD + NLP + PM, and D =
SD + PM.       

Percentage-point 
difference      

NLP 
effect 

NLP +
PM 
effect 

PM 
effect 

Sample A 
(%) 

B 
(%) 

C (%) D (%) B-A C-A D-A 

Overall  4.52  6.41  24.92  23.03  1.89  20.40  18.51 
Sex            
Female  6.11  8.48  31.85  29.48  2.37  25.74  23.37 
Male  2.26  3.46  15.02  13.82  1.21  12.76  11.56 
Race            
White  5.13  7.30  27.81  25.64  2.17  22.68  20.51 
American 

Indian/Alaska 
Native  

3.00  4.49  17.98  16.48  1.50  14.98  13.48 

Asian  2.40  3.30  15.95  15.06  0.89  13.55  12.65 
Black or African 

American  
2.58  3.41  13.01  12.19  0.83  10.44  9.61 

Native 
Hawaiian/ 
Pacific 
Islander  

2.72  4.26  17.57  16.03  1.54  14.86  13.31 

Other  2.95  4.05  17.41  16.31  1.10  14.46  13.37 
Unknown/Did 

not disclose  
2.89  4.24  16.90  15.55  1.35  14.01  12.66 

Ethnicity            
non-Hispanic  4.83  6.89  26.47  24.40  2.06  21.64  19.57 
Hispanic  3.38  4.56  19.07  17.89  1.18  15.69  14.51 
Unknown/Did 

not disclose  
2.96  4.19  17.15  15.92  1.24  14.19  12.96 

Primary 
Language            

English  4.80  6.81  26.15  24.14  2.01  21.36  19.34 
Spanish  1.83  2.45  13.14  12.51  0.63  11.31  10.68 
Other  1.05  1.46  8.97  8.57  0.41  7.92  7.51 

Note: P values for all tested differences were < 0.001; Models for Unknow/Did 
not disclose Sex did not converge due to sample size; The following comparisons 
are not included due to redundancy: D-C = -(B-A); C-B = D-A. 
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NLP (OR = 0.73; P < 0.001), and PM (OR = 0.83; P < 0.001). Compared 
with patients with an English preference, patients who preferred Span-
ish had lower identification odds with the SD, SD + NLP, and PM al-
gorithms (OR = 0.46, 0.44, and 0.61 respectively; P < 0.001). 

Table 5 shows that patients identified as non-Hispanic White females 
who prefer English had the highest probability of meeting algorithm 

criteria with the SD (0.071; CI: 0.069, 0.073), SD + NLP (0.030; CI: 
0.029, 0.032), and PM (0.292; CI: 0.288, 0.296) algorithms. These 
probabilities were considerably higher than among other groups, the 
lowest of which ranged from 0.003 (CI: 0.002, 0.005) using the SD al-
gorithm to 0.022 (0.018, 0.027) using the PM algorithm (Table 4). 

Table 4 
Multivariable logistic regression models showing predictors of meeting the criteria at each algorithm enhancement: Step 1 population = all patients analyzed with the 
SD algorithm; Step 2 population = patients who did not meet the criteria using the SD algorithm, analyzed with SD + NLP algorithm; Step 3 population = patients who 
did not meet the criteria using SD or SD + NLP, analyzed using PM algorithm.   

Step 1 (SD) Step 2 (SD þ NLP) Step 3 (PM)  

N = 119,677 N = 114,249 N = 111,982 

Characteristic OR 95 % CI P value OR 95 % CI P value OR 95 % CI P value 

Sex          
Female — —  — —  — —  
Male 0.35 0.33, 0.38  <0.001 0.48 0.43, 0.52  <0.001 0.39 0.38, 0.40  <0.001 
Race          
White — —  — —  — —  
American Indian/Alaska Native 0.53 0.35, 0.79  0.003 0.65 0.35, 1.10  0.14 0.54 0.44, 0.66  <0.001 
Asian 0.52 0.43, 0.61  <0.001 0.45 0.33, 0.58  <0.001 0.57 0.53, 0.62  <0.001 
Black or African American 0.60 0.48, 0.75  <0.001 0.45 0.30, 0.65  <0.001 0.45 0.40, 0.51  <0.001 
Native Hawaiian/Pacific Islander 0.53 0.39, 0.69  <0.001 0.70 0.47, 1.00  0.06 0.57 0.49, 0.65  <0.001 
Other 0.74 0.65, 0.83  <0.001 0.76 0.62, 0.92  0.006 0.74 0.70, 0.79  <0.001 
Unknown/Did not disclose 0.73 0.55, 0.97  0.034 0.93 0.60, 1.41  0.70 0.73 0.63, 0.85  <0.001 
Ethnicity          
non-Hispanic/Latino — —  — —  — —  
Hispanic/Latino 0.90 0.81, 1.01  0.076 0.73 0.61, 0.87  <0.001 0.83 0.78, 0.88  <0.001 
Unknown/Did not disclose 0.79 0.62, 0.99  0.049 0.66 0.45, 0.94  0.028 0.75 0.66, 0.85  <0.001 
Language          
English — —  — —  — —  
Spanish 0.46 0.37, 0.57  <0.001 0.44 0.30, 0.61  <0.001 0.61 0.56, 0.67  <0.001 
Other 0.28 0.20, 0.38  <0.001 0.27 0.16, 0.44  <0.001 0.41 0.36, 0.47  <0.001 

OR = Odds Ratio, CI = Confidence Interval. 

Table 5 
Top and bottom five predicted probabilities of meeting genetic testing criteria based on Sex, Race, Ethnicity and Language comparing 3 stepped populations. Step 1 - all 
patients. Step 2 - patients that did NOT meet SD + NLP criteria. Step 3 - patients that did NOT meet NLP criteria.  

Rank Sex Race Ethnicity Language Probability 95 % CI 

Step 1 population ¼ all patients (N ¼ 119,677) – SD algorithm 

Top 5 Female White non-Hispanic/Latino English  0.071 (0.069, 0.073) 
Female White Hispanic/Latino English  0.065 (0.058, 0.072) 
Female White Unknown/Did not disclose English  0.057 (0.045, 0.071) 
Female Other non-Hispanic/Latino English  0.053 (0.047, 0.060) 
Female Unknown/Did not disclose non-Hispanic/Latino English  0.053 (0.040, 0.069) 

Bottom 5 Male Native Hawaiian/Pacific Islander Hispanic/Latino Other  0.004 (0.002, 0.006) 
Male Asian Hispanic/Latino Other  0.003 (0.002, 0.005) 
Male American Indian/Alaska Native Unknown/Did not disclose Other  0.003 (0.002, 0.006) 
Male Native Hawaiian/Pacific Islander Unknown/Did not disclose Other  0.003 (0.002, 0.005) 
Male Asian Unknown/Did not disclose Other  0.003 (0.002, 0.005) 

Step 2 population ¼ patients that did not meet the criteria using SD (N ¼ 114,249) – SD þ NLP algorithm 
Top 5 Female White non-Hispanic/Latino English  0.030 (0.029, 0.032) 

Female Unknown/Did not disclose non-Hispanic/Latino English  0.028 (0.019, 0.042) 
Female Other non-Hispanic/Latino English  0.023 (0.019, 0.028) 
Female White Hispanic/Latino English  0.022 (0.019, 0.027) 
Female Native Hawaiian/Pacific Islander non-Hispanic/Latino English  0.021 (0.015, 0.031) 

Bottom 5 Male American Indian/Alaska Native Unknown/Did not disclose Other  0.002 (0.001, 0.004) 
Male Black or African American Hispanic/Latino Other  0.001 (0.001, 0.003) 
Male Asian Hispanic/Latino Other  0.001 (0.001, 0.002) 
Male Black or African American Unknown/Did not disclose Other  0.001 (0.001, 0.002) 
Male Asian Unknown/Did not disclose Other  0.001 (0.001, 0.002) 

Step 3 population ¼ patients that did not meet the criteria using NLP (N ¼ 111,982) - PM 
Top 5 Female White non-Hispanic/Latino English  0.292 (0.288, 0.296) 

Female White Hispanic/Latino English  0.255 (0.244, 0.266) 
Female White Unknown/Did not disclose English  0.236 (0.215, 0.259) 
Female Other non-Hispanic/Latino English  0.235 (0.223, 0.247) 
Female Unknown/Did not disclose non-Hispanic/Latino English  0.232 (0.207, 0.259) 

Bottom 5 Male Asian Unknown/Did not disclose Other  0.028 (0.023, 0.033) 
Male Native Hawaiian/Pacific Islander Unknown/Did not disclose Other  0.027 (0.022, 0.034) 
Male American Indian/Alaska Native Unknown/Did not disclose Other  0.026 (0.020, 0.034) 
Male Black or African American Hispanic/Latino Other  0.024 (0.020, 0.029) 
Male Black or African American Unknown/Did not disclose Other  0.022 (0.018, 0.027)  
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4. Discussion 

Two algorithm enhancements using NLP (SD + NLP) and a relaxed 
eligibility criteria (PM) were investigated to increase the identification 
rate and reduce demographic differences among patients meeting 
evidence-based criteria for genetic testing of hereditary cancer syn-
dromes. Both enhancements incrementally increased the identification 
rates across all groups according to sex, race, ethnicity, and language 
preference significantly. Therefore, the enhanced algorithms have the 
potential to benefit a substantially larger number of patients. Yet, 
neither enhancement substantially decreased the systematic relative 
differences that were discovered in the output of the SD algorithm.[11]. 

4.1. Enhanced algorithms 

This study demonstrated algorithm enhancements testing two ap-
proaches to addressing missing data that led to significant increases in 
the identification of patients who would benefit from genetic testing of 
hereditary cancer syndromes. Other healthcare use cases could benefit 
from similar approaches to address missing data. Placing free-text fields 
adjacent to structured data fields is a common pattern used to supple-
ment structured data in EHRs. Using NLP to extract information from 
these fields could be valuable in other similar use cases. For example, 
although the majority of data attributes in drug prescriptions (e.g., drug 
product, strength, form, route) are collected in structured format, pro-
vider directions for taking the medication (e.g., “Take one tablet by 
mouth every four to six hours”) are often stored in unstructured format 
and are critical for use cases where it is necessary to compute the total 
dose of medication taken over time.[17]. 

Surprisingly, the information extracted by NLP that had the highest 
yield in additional patients meeting testing criteria was for disease of 
interest. Users often selected a generic code (i.e., code for “cancer“) from 
a drop-down list and typed the specific cancer (e.g., “pancreatic”) in the 
free-text comments field, even though a comprehensive list of cancer 
types is provided as a drop-down list in the family history section of the 
EHR. This finding suggests that improved usability may help users select 
specific cancer codes for the disease of interest more efficiently. Another 
type of information that resulted in the identification of additional pa-
tients was age of onset. Although a discrete field is available in the EHR 
for users to type the age of onset as an integer, users most often prefer to 
enter a fuzzy range as text (e.g., low 30 s), possibly because patients may 
not know the exact age of onset. Possible improvements include the 
provision of a drop-down list with relevant ranges. In fact, such an 
improvement has recently been implemented by the Epic EHR, which 
now allows the documentation of age of onset as a range in addition to an 
integer. In addition to user interface improvements, another potential 
approach is to apply NLP methods to extract family history information 
from clinical notes, since specific providers may not be using the EHR’s 
dedicated family history section to document family history. 

The PM approach helped identify a large number of additional in-
dividuals who did not meet full criteria, due to missing age of onset. 
Targeted approaches could be designed to complete missing data for 
these patients and confirm their eligibility for genetic testing. For 
example, a population-based outreach approach could be used to target 
patients with documented family history of breast, endometrial, and 
colorectal cancer, but no age of onset specified. Digital tools, such as 
patient portals or chatbots, could be used to ask one simple question to 
confirm whether the approximate age of onset was above or below a 
threshold value. Other approaches could be used to prioritize patients 
for additional data collection and outreach, such as data imputation and 
machine learning, with the goal of identifying patients with the highest 
likelihood of meeting criteria. Therefore, PM algorithms are a promising 
approach to identify targeted patient cohorts that may benefit from 
additional data collection. 

4.2. Differences by demographic characteristics 

The COVID-19 pandemic recently magnified the need to disaggre-
gate healthcare data by demographic characteristics when it became 
clear that specific groups were being disproportionally affected.[18] A 
study examining demographic disparities in algorithmic performance 
for detecting in-hospital patient deterioration has found analogous dis-
crepancies post-hoc, years after the algorithm’s widespread imple-
mentation, and by researchers not initially involved in its development. 
[19] This kind of validation is rarely done as a part of algorithm 
development, before algorithms are widely implemented in clinical 
settings. The present study illustrates a method that could be used as a 
part of algorithm development to systematically quantify and compare 
differences by demographic characteristics resulting from multiple EHR 
data-driven algorithms. Findings from such assessments could be used to 
further guide algorithm development and to design other mitigation 
strategies, such as improved datasets. 

In the present and other similar use cases, it is possible that certain 
kinds of algorithm-induced disparities cannot be addressed through 
algorithmic approaches. Rather, directed strategies are needed to 
address systemic biases in the underlying data. For example, targeted 
data collection approaches could be implemented such as using com-
munity health workers and self-administered questionnaires to collect 
abbreviated family history,[20] digital health navigators to improve 
access to patient portals for pre-visit questionnaires,[21] and proactive 
patient outreach via digital tools to complete missing attributes in family 
history records. 

There is movement suggesting all women be screened for BRCA 
mutations[22], potentially addressing genetic testing inequities for 
women. However, national guidelines such as NCCN[23,24] and the US 
Preventive Services Task Force[3] (USPSTF) still recommend a risk- 
based approach based on family history. Nevertheless, the GARDE ar-
chitecture allows algorithms to be updated over time to reflect changes 
in national recommendations for genetic testing. 

5. Limitations 

This study had several limitations. First, the analysis assumes that 
the prevalence of hereditary cancer syndromes is similar among 
different groups, when there may be differences attributable to genetic 
and socio-environmental factors or even bias in the underlying NCCN 
criteria. Yet, it is unlikely that differences in prevalence among groups 
would be as substantial as those found in this study. Second, although 
the PM approach led to a substantial increase in the identification rate, 
only an unknown subset of those patients will actually meet criteria after 
additional steps are taken to collect missing data. Still, as described 
above, the PM algorithm can be used to identify cohorts for targeted 
data collection approaches. Last, this study was conducted at one aca-
demic healthcare system that uses a specific EHR product and provides 
care to a population in one US state (Utah) which does not reflect the 
national distributions of race and ethnicity. Thus, it is unknown if the 
results are generalizable to other settings. Still, the proposed algorithm 
enhancement approaches and disparity analysis method are healthcare 
system and EHR-agnostic, and therefore could be adapted or adopted in 
other settings. 

6. Conclusion 

This study found substantial relative differences in the algorithmic 
identification of individuals meeting family history-based criteria for 
genetic testing of hereditary cancer syndromes. Although algorithm 
enhancements increased the overall identification rate, relative differ-
ences across groups persisted. Directed approaches (e.g., self- 
administered questionnaires to collect abbreviated family history, digi-
tal tools) are needed to address underlying differences in EHR data 
availability and completeness by demographic group as well as 
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potentially the prioritized application of algorithm enhancements to 
populations with missing data. Algorithm development studies should 
systematically and proactively assess disparities in algorithm perfor-
mance as a part of algorithm development. 

Funding 

This study was supported by grants U01CA232826S1, 
U24CA204800, and 1U24CA274582 from the National Cancer Institute 
(NCI) of the National Institutes of Health (NIH). 

CRediT authorship contribution statement 

Richard L. Bradshaw: Supervision, Writing – original draft, Meth-
odology, Software, Data curation. Kensaku Kawamoto: Writing – re-
view & editing. Jemar R. Bather: Methodology, Writing – review & 
editing. Melody S. Goodman: Methodology, Writing – review & edit-
ing. Wendy K. Kohlmann: Writing – review & editing. Daniel Chavez- 
Yenter: Writing – review & editing. Molly Volkmar: Project adminis-
tration. Rachel Monahan: Project administration. Kimberly A. 
Kaphingst: Supervision, Funding acquisition, Writing – review & edit-
ing. Guilherme Del Fiol: Conceptualization, Supervision, Funding 
acquisition, Writing – original draft. 

Declaration of competing interest 

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests: 
[Guilherme Del Fiol reports financial support was provided by National 
Institutes of Health. Guilherme Del Fiol is an editorial board member of 
the Journal of Biomedical Informatics. Kensaku Kawamoto has received 
consulting honoraries from Pfizer, RTI International, University of Cal-
ifornia at San Francisco, Indiana University, Korean Society of Medical 
Informatics, NORC at University of Chicago, Regenstrief Foundation, 
University of Pennsylvania, Yale University, and Security Risk 
Solutions]. 

References 

[1] H. Ibrahim, X. Liu, N. Zariffa, A.D. Morris, A.K. Denniston, Health data poverty: an 
assailable barrier to equitable digital health care, Lancet Digit Health. 3 (4) (2021) 
e260–e265, https://doi.org/10.1016/S2589-7500(20)30317-4. 

[2] R.G. Caffrey, Advocating for equitable management of hereditary cancer 
syndromes, J Genet Couns. 31 (3) (2022) 584–589, https://doi.org/10.1002/ 
jgc4.1548. 

[3] U.S.P.S.T. Force, D.K. Owens, K.W. Davidson, et al., Risk assessment, genetic 
counseling, and genetic testing for BRCA-related cancer: US preventive services 
task force recommendation statement, JAMA 322 (7) (2019) 652–665, https://doi. 
org/10.1001/jama.2019.10987. 

[4] D.K. Rex, C.R. Boland, J.A. Dominitz, et al., Colorectal cancer screening: 
Recommendations for physicians and patients from the U.S. multi-society task 
force on colorectal cancer, Gastroenterology 153 (1) (2017) 307–323, https://doi. 
org/10.1053/j.gastro.2017.05.013. 

[5] Scheuner MT, McNeel TS, Freedman AN. Population prevalence of familial cancer 
and common hereditary cancer syndromes. The 2005 California Health Interview 

Survey. Genetics in medicine : official journal of the American College of Medical 
Genetics. Nov 2010;12(11):726-310.1097/GIM.0b013e3181f30e9e. 

[6] A.W. Kurian, P. Abrahamse, A. Furgal, et al., Germline Genetic Testing After 
Cancer Diagnosis, JAMA 330 (1) (2023) 43–51, https://doi.org/10.1001/ 
jama.2023.9526. 

[7] A.W. Kurian, K.C. Ward, P. Abrahamse, et al., Time Trends in Receipt of Germline 
Genetic Testing and Results for Women Diagnosed With Breast Cancer or Ovarian 
Cancer, 2012–2019, J Clin Oncol. 39 (15) (2021) 1631–1640, https://doi.org/ 
10.1200/JCO.20.02785. 

[8] G. Del Fiol, W. Kohlmann, R.L. Bradshaw, et al., Standards-based clinical decision 
support platform to manage patients who meet guideline-based criteria for genetic 
evaluation of familial cancer, JCO Clin Cancer Inform. 4 (2020) 1–9, https://doi. 
org/10.1200/CCI.19.00120. 

[9] R.L. Bradshaw, K. Kawamoto, K.A. Kaphingst, et al., GARDE: a standards-based 
clinical decision support platform for identifying population health management 
cohorts, J Am Med Inform Assoc. 29 (5) (2022) 928–936, https://doi.org/10.1093/ 
jamia/ocac028. 

[10] K.A. Kaphingst, W. Kohlmann, R.L. Chambers, et al., Comparing models of delivery 
for cancer genetics services among patients receiving primary care who meet 
criteria for genetic evaluation in two healthcare systems: BRIDGE randomized 
controlled trial, BMC Health Serv Res. 21 (1) (2021) 542, https://doi.org/10.1186/ 
s12913-021-06489-y. 

[11] D. Chavez-Yenter, M.S. Goodman, Y. Chen, et al., Association of disparities in 
family history and family cancer history in the electronic health record with sex, 
race, hispanic or latino ethnicity, and language preference in 2 large US health care 
systems, JAMA Netw Open. 5 (10) (2022), https://doi.org/10.1001/ 
jamanetworkopen.2022.34574. 

[12] Mowery DL, Kawamoto K, Bradshaw R, et al. Determining Onset for Familial Breast 
and Colorectal Cancer from Family History Comments in the Electronic Health 
Record. 2019. 

[13] J. Shi, K.L. Morgan, R.L. Bradshaw, et al., Identifying patients who meet criteria for 
genetic testing of hereditary cancers based on structured and unstructured family 
health history data in the electronic health record: natural language processing 
approach, JMIR Med Inform. 10 (8) (2022), https://doi.org/10.2196/37842. 

[14] K.-Y. Liang, S.L. Zeger, Longitudinal data analysis using generalized linear models, 
Biometrika 73 (1) (1986) 13–22, https://doi.org/10.1093/biomet/73.1.13. 

[15] B. Hidalgo, M. Goodman, Multivariate or multivariable regression? Am J Public 
Health. 103 (1) (2013) 39–40, https://doi.org/10.2105/AJPH.2012.300897. 

[16] Team. RC. A Language and Environment for Statistical Computing. Computing. 08/ 
22/2023 2006;1. 

[17] D.R. Harris, D.W. Henderson, A. Corbeau, sig2db: a workflow for processing 
natural language from prescription instructions for clinical data warehouses, AMIA 
Jt Summits Transl Sci Proc. 2020 (2020) 221–230. 

[18] W. Mude, V.M. Oguoma, T. Nyanhanda, L. Mwanri, C. Njue, Racial disparities in 
COVID-19 pandemic cases, hospitalisations, and deaths: A systematic review and 
meta-analysis, J Glob Health. 11 (2021) 05015, https://doi.org/10.7189/ 
jogh.11.05015. 

[19] T.F.t. Byrd, B. Southwell, A. Ravishankar, et al., Validation of a proprietary 
deterioration index model and performance in hospitalized adults, JAMA Netw 
Open. 6 (7) (2023) e2324176, https://doi.org/10.1001/ 
jamanetworkopen.2023.24176. 

[20] L. Marsh, M. Mendoza, Z. Tatsugawa, et al., A community health worker model to 
support hereditary cancer risk assessment and genetic Testing, Obstet Gynecol. 
(2023), https://doi.org/10.1097/aog.0000000000005292. 

[21] H. Wisniewski, T. Gorrindo, N. Rauseo-Ricupero, D. Hilty, J. Torous, The role of 
digital navigators in promoting clinical care and technology integration into 
practice, Digit Biomark. Winter 4 (Suppl 1) (2020) 119–135, https://doi.org/ 
10.1159/000510144. 

[22] M.C. King, E. Levy-Lahad, A. Lahad, Population-based screening for BRCA1 and 
BRCA2: 2014 lasker award, JAMA 312 (11) (2014) 1091–1092, https://doi.org/ 
10.1001/jama.2014.12483. 

[23] NCCN.org. Genetic/Familial High-Risk Assessment: Breast and Ovarian. October 
30, 20Accessed August 1, 20 https://www.nccn.org/guidelines. 

[24] NCCN.org. Genetic/Familial High-Risk Assessment: Colorectal. October 30, 2023. 
Accessed August 1, 2023. https://www.nccn.org/professionals/physician_gls/pdf 
/genetics_colon.pdf. 

R.L. Bradshaw et al.                                                                                                                                                                                                                            

https://doi.org/10.1016/S2589-7500(20)30317-4
https://doi.org/10.1002/jgc4.1548
https://doi.org/10.1002/jgc4.1548
https://doi.org/10.1001/jama.2019.10987
https://doi.org/10.1001/jama.2019.10987
https://doi.org/10.1053/j.gastro.2017.05.013
https://doi.org/10.1053/j.gastro.2017.05.013
https://doi.org/10.1001/jama.2023.9526
https://doi.org/10.1001/jama.2023.9526
https://doi.org/10.1200/JCO.20.02785
https://doi.org/10.1200/JCO.20.02785
https://doi.org/10.1200/CCI.19.00120
https://doi.org/10.1200/CCI.19.00120
https://doi.org/10.1093/jamia/ocac028
https://doi.org/10.1093/jamia/ocac028
https://doi.org/10.1186/s12913-021-06489-y
https://doi.org/10.1186/s12913-021-06489-y
https://doi.org/10.1001/jamanetworkopen.2022.34574
https://doi.org/10.1001/jamanetworkopen.2022.34574
https://doi.org/10.2196/37842
https://doi.org/10.1093/biomet/73.1.13
https://doi.org/10.2105/AJPH.2012.300897
http://refhub.elsevier.com/S1532-0464(23)00289-7/h0085
http://refhub.elsevier.com/S1532-0464(23)00289-7/h0085
http://refhub.elsevier.com/S1532-0464(23)00289-7/h0085
https://doi.org/10.7189/jogh.11.05015
https://doi.org/10.7189/jogh.11.05015
https://doi.org/10.1001/jamanetworkopen.2023.24176
https://doi.org/10.1001/jamanetworkopen.2023.24176
https://doi.org/10.1097/aog.0000000000005292
https://doi.org/10.1159/000510144
https://doi.org/10.1159/000510144
https://doi.org/10.1001/jama.2014.12483
https://doi.org/10.1001/jama.2014.12483
https://www.nccn.org/guidelines
https://www.nccn.org/professionals/physician_gls/pdf/genetics_colon.pdf
https://www.nccn.org/professionals/physician_gls/pdf/genetics_colon.pdf

	Enhanced family history-based algorithms increase the identification of individuals meeting criteria for genetic testing of ...
	1 Introduction
	1.1 Statement of significance

	2 Methods
	2.1 Setting
	2.2 Study population
	2.3 Data
	2.4 Algorithms
	2.4.1 Structured Data + Natural language processing (SD + NLP)
	2.4.2 Partial match (PM)

	2.5 Hypotheses
	2.6 Statistical analysis

	3 Results
	3.1 Do algorithm enhancements increase the identification rate of eligible patients?
	3.2 Do algorithm enhancements affect relative differences across groups?

	4 Discussion
	4.1 Enhanced algorithms
	4.2 Differences by demographic characteristics

	5 Limitations
	6 Conclusion
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	References


